THE MARTINGALE METHOD DEMYSTIFIED

SIMON ELLERSGAARD NIELSEN

Abstract. We consider the nitty gritty of the martingale approach to option pricing. These notes are largely based upon Björk’s *Arbitrage Theory in Continuous Time* and Munk’s *Fixed Income Securities*.

1. Changing the Measure

Consider the probability space \((\Omega, \mathcal{F})\) then we may think of how different allocations of probabilities to events in this space are interconnected. We say that two probability measures \(P\) and \(Q\) are **equivalent** (labelled \(P \sim Q\)) on \(\mathcal{F}\) just in case

\[
P(A) = 0 \iff Q(A) = 0, \quad \forall A \in \mathcal{F}.
\]

In particular, the **Radon-Nikodym theorem** instructs us that

\[
P(A) = 0 \Rightarrow Q(A) = 0, \quad \forall A \in \mathcal{F} \quad \text{(i.e. } Q \text{ is absolutely continuous w.r.t. } P \text{ on } \mathcal{F} : Q \ll P) \quad \text{if and only if there exists an } \mathcal{F}\text{-measurable mapping } \xi : \Omega \mapsto \mathbb{R}^+ \text{ such that}
\]

\[
\int_A dQ(\omega) = \int_A \xi(\omega)dP(\omega), \quad \forall A \in \mathcal{F}.
\]
(1)

In the event that \(A = \Omega\) the left-hand-side in this expression is unity (per definition of a probability measure). Likewise, the right-hand-side is defined as \(\int_\Omega \xi dP \equiv \mathbb{E}_P[\xi]\). All in all, the quantity \(\xi\) is therefore a non-negative random variable with \(\mathbb{E}_P[\xi] = 1\). Since \(\xi\) infinitesimally can be written \(\xi = dQ/dP\), \(\xi\) is commonly referred to as the **likelihood ratio** between \(Q\) and \(P\) or the **Radon-Nikodym derivative**. Three standard results surrounding \(\xi\) deserve mentioning:

1. For any random variable \(X\) on \(L^1(\Omega, \mathcal{F}, Q)\): \(\mathbb{E}^Q[X] = \mathbb{E}^P[\xi X]\) and \(\mathbb{E}^Q[\xi^{-1} X] = \mathbb{E}^P[X]\). Proof: obvious using definitions.
2. Assume \(Q\) is absolutely continuous w.r.t. \(P\) on \(\mathcal{F}\) and that \(\mathcal{G} \subseteq \mathcal{F}\), then the likelihood ratios \(\xi_\mathcal{G}\) and \(\xi_\mathcal{F}\) are related by \(\xi_\mathcal{G} = \mathbb{E}^P[\xi_\mathcal{F} | \mathcal{G}]\).
3. Finally, assume \(X\) is a random variable on \((\Omega, \mathcal{F}, P)\) and let \(Q\) be another measure on \((\Omega, \mathcal{F})\) with Radon-Nikodym derivative \(\xi = dQ/dP\) on \(\mathcal{F}\). Assume \(X \in L^1(\Omega, \mathcal{F}, P)\) and let \(H \subseteq \mathcal{F}\) then

\[
\mathbb{E}^Q[X | \mathcal{G}] = \frac{\mathbb{E}^P[\xi X | \mathcal{G}]}{\mathbb{E}^P[\xi | \mathcal{G}]}, \quad Q - \text{a.s.}
\]

This result is sometimes referred to as the **Abstract Bayes’ Theorem**.

1
Example: To get a feel for how these results are used in mathematical finance we consider the classical set-up: a filtered probability space \((\Omega, \mathcal{F}, \mathbb{P}, \{\mathcal{F}_t\}_{t \in [0,T]})\) on a compact interval \([0,T]\). Typically, we are interested in some stochastic process \(\{X_t\}_{t \in [0,T]}\) (e.g. a stock price) such that \(\Omega\) is the set of all possible paths of the process over \([0,T]\). Since all relevant uncertainty has been resolved at time \(T\) all (relevant) random variables will be known at time \(T\). If we now consider the non-negative random variable \(\xi_T\) in \(\mathcal{F}_T\), then provided \(\mathbb{E}[\xi_T] = 1\) we may define a new probability measure \(\mathbb{Q}\) on \(\mathcal{F}_T\) by setting \(d\mathbb{Q} = \xi_T d\mathbb{P}\). Per definition, \(\xi_T\) is a Radon-Nikodym derivative of \(\mathbb{Q}\) w.r.t. \(\mathbb{P}\) on \(\mathcal{F}_T\) so \(\mathbb{Q} \ll \mathbb{P}\) on \(\mathcal{F}_T\). Thus, we will also have \(\mathbb{Q} \ll \mathbb{P}\) on \(\mathcal{F}_t\) \(\forall t \leq T\) so by the Radon-Nikodym Theorem there exists a random process \(\{\xi_t\}_{t \in [0,T]}\) defined by \(\xi_t = d\mathbb{Q}/d\mathbb{P}\) on \(\mathcal{F}_t\), which we call the likelihood process. Item (2) above now immediately implies that the \(\xi\)-process is a \(\mathbb{P}\)-martingale:

\[
\mathbb{E}[\xi_{t'}|\mathcal{F}_t] = \xi_t, \quad t' > t.
\]

Using this fact alongside item (3) also gives us the result that:

\[
\mathbb{E}[X_{t'}|\mathcal{F}_t] = \mathbb{E}\left[\frac{\xi_{t'}}{\xi_t}X_{t'}|\mathcal{F}_t\right]
\]

which turns out to be extremely useful in option pricing upon jumping between different numeraires.

2. The First and Second Fundamental Theorems

We consider a market model consisting of the non-dividend paying asset price processes \(S_0, S_1, \ldots, S_N\) on the time interval \([0,T]\).

Theorem 1. The First Fundamental Theorem The market model is free of arbitrage if and only there exists a martingale measure, i.e. a measure \(\mathbb{Q} \sim \mathbb{P}\) such that the processes

\[
\frac{S_{0t}}{S_{0t}}, \frac{S_{1t}}{S_{0t}}, \ldots, \frac{S_{Nt}}{S_{0t}}
\]

are (local) martingales under \(\mathbb{Q}\).

Notice that we don’t commit ourselves to the interpretation that the numeraire, \(S_0\), is the risk free asset. However, if indeed \(S_{0t} = B_t \equiv \exp\left(\int_0^t r_s ds\right)\) where \(r\) is a possibly stochastic short rate, and we assume all processes are Wiener driven, meaning that \(dS_{it} = S_{it} \mu_{it} dt + S_{it} \sigma_{it}^1 dW^P_t\), then a measure \(\mathbb{Q} \sim \mathbb{P}\) (the so risk-neutral measure associated with the risk free numeraire) is a martingale measure if and only if

\[
dS_{it} = S_{it} r_{it} dt + S_{it} \sigma_{it}^1 dW^Q_t
\]

\(\forall i \in \{0,1,\ldots,N\}\), where \(W^Q\) is a \(d\)-dimensional \(\mathbb{Q}\)-Wiener process. I.e. all assets have \(r\) as the short rate as their local rates of return. Proof: apply Itô’s lemma to \(S_{it}/S_{0t}\). Just in case \(\mu_{it} = r_{it}\) do we obtain a local martingale (i.e. vanishing drift).
Next, we consider what it takes for us to be able to replicate (synthesise) assets on the market using existing products:

Theorem 2. The Second Fundamental Theorem Assuming absence of arbitrage, the market model is complete if and only if the martingale measure Q is unique.

NB: this does clearly not say that there is only one martingale measure in existence. It only says that for this particular choice of numeraire (S_0) the measure is uniquely determined.

Theorem 3. Pricing Contingent Claims Consider a contingent claim, X, that expires at time T. In order to avoid arbitrage we must price the claim according to

$$X_t = S_{0t}E^Q \left[\frac{X_T}{S_{0T}} | \mathcal{F}_t \right]$$

(4)

where Q is a martingale measure for $\{ S_0, S_1, \ldots, S_N \}$ with S_0 as the numeraire. In particular, insofar as S_{0t} is the risk free asset $S_{0t} = \exp(\int_0^t r_s ds)$, then we obtain the classical pricing formula

$$X_t = E^Q \left[e^{-\int_t^T r_s ds} X_T | \mathcal{F}_t \right]$$

(5)

3. The Martingale Theorem and Girsanov’s Theorem

Let W be a d-dimensional Wiener process and let X be a stochastic variable which is both \mathcal{F}_t^W measurable and L^1. Then there exists a uniquely determined \mathcal{F}_t^W-adapted process $h = (h_1, h_2, \ldots, h_d)$ such that X has the representation

$$X = E[X] + \int_0^T h_s^T dW_s.$$

(6)

Under the additional assumption that $E[X^2] < \infty$ then h_1, h_2, \ldots, h_d are in \mathcal{L}^2.

We can use this lemma to prove the following

Theorem 4. The Martingale Representation Theorem Let W be a d-dimensional Wiener process, and assume that the filtration $\{ \mathcal{F}_t \}_{t \in [0,T]}$ is defined as $\mathcal{F}_t = \mathcal{F}_t^W$ for $t \in [0,T]$. Now let M be any \mathcal{F}_t martingale. Then there exists a uniquely determined \mathcal{F}_t adapted process $h = (h_1, h_2, \ldots, h_d)$ such that M has the representation

$$M_t = M_0 + \int_0^T h_s^T dW_s, \ t \in [0,T].$$

If the martingale M is square integrable, then h_1, h_2, \ldots, h_d are in \mathcal{L}^2.
Recall from section 1 that the measure transformation \(dQ = \xi_t dP\) on \(\mathcal{F}_T\) (where \(\xi_T\) is a nonnegative random variable with \(\mathbb{E}^P[\xi_T] = 1\)) generates a likelihood process \(\{\xi_t\}_{t \in [0,T]}\) defined by \(\xi_t \equiv dQ/dP\) on \(\mathcal{F}_t\) which is a \(P\)-martingale. It thus seems natural to define \(\xi_t\) as the solution to the SDE \(d\xi_t = \phi_t \xi_t dW_t^P\) with initial condition \(\xi_0 = 1\) for some choice of the process \(\phi\) (the initial condition guarantees unitary expectation under \(P\)). In fact, using this SDE we should be able to generate a host of natural measure transformations from \(P\) to the new measure \(Q\), which indeed also is the upshot of Girsanov’s theorem:

Theorem 5. Girsanov’s Theorem Let \(W_t^P\) be a \(d\)-dimensional standard \(P\)-Wiener process on \((\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}_{t \in [0,T]})\) and let \(\phi\) be any \(d\)-dimensional adapted column vector process (which we refer to as the Girsanov kernel). Now define the process \(\xi\) on \([0,T]\) by

\[
d\xi_t = \xi_t \phi_t^\top dW_t^P, \quad \xi_0 = 1
\]

or identically

\[
\xi_t = \exp \left\{ \int_0^t \phi_s^\top dW_s^P - \frac{1}{2} \int_0^t ||\phi_s||^2 ds \right\}.
\]

Now assume that \(\mathbb{E}^P[\xi_T] = 1\) (see the Novikov condition) and define the new probability measure \(Q\) on \(\mathcal{F}_T\) by \(dQ = \xi_T dP\) on \(\mathcal{F}_T\) then

\[
dW_t^P = \phi_t dt + dW_t^Q \quad (7)
\]

where \(W_t^Q\) is a \(Q\) Wiener process.

Proof. To show this we must show that for \(t < t'\) and under \(Q\), the increment \(W_{t'}^Q - W_t^Q\) is independent of \(\mathcal{F}_t\) and normally distributed with zero mean and variance \(t' - t\). Formally this is expressed as \(\mathbb{E}^Q[e^{iu(W_{t'}^Q - W_t^Q)}|\mathcal{F}_t] = e^{-\frac{u^2}{2}(t'-t)}\) using characteristic functions. \(\square\)

We make the following observations:

- Assume that the Girsanov kernel \(\phi\) is such that
 \[
 \mathbb{E}^P \left[e^{\frac{1}{4} \int_0^T ||\phi_t||^2 dt} \right] < \infty
 \]
 then \(\xi\) is a martingale and in particular \(\mathbb{E}^P[\xi_T] = 1\). This useful result is known as the **Novikov condition**.
- Girsanov’s theorem holds in reverse. In particular, assume \(W^P\) is a \(d\)-dimensional standard \(P\)-Wiener process on \((\Omega, \mathcal{F}, P, \{\mathcal{F}_t\}_{t \in [0,T]})\) and assume that \(\mathcal{F}_t = \mathcal{F}_t^W \forall t\). Furthermore, assume there exists a measure \(Q\) such that \(Q \ll P\) on \(\mathcal{F}_T\) then there exists an adapted process \(\phi\) such that the likelihood process \(\xi\) has the dynamics
 \[
 d\xi_t = \xi_t \phi_t^\top dW_t^P, \quad \xi_0 = 1.
 \]
- Finally notice that SDEs of the form \(dX_t = \mu_t dt + \sigma_t dW_t^P\) transform as \(dX_t = (\mu_t + \sigma_t \phi_t) dt + \sigma_t dW_t^Q\) under \(Q\), which means that the drift changes \(\mu_t \rightarrow \mu_t + \sigma_t \phi_t\), but the diffusion remains unchanged.
4. The Market Price of Risk

Consider the case where we have N risky assets governed by the vector SDE system

$$dS_t = \text{diag}(S_t)[\mu_t dt + \sigma_t dW^P_t]$$

where W is a d-dimensional Wiener process with independent components and μ and σ respectively are N and $N \times d$ dimensional tensors adapted to the Wiener filtration. From equation (3) we know that under the risk free numeraire, S_0^Q, is a martingale just if all tradable assets $\{S_0, S_1, ..., S_N\}$ have the short rate as their local rate of return:

$$dS_t = \text{diag}(S_t)[r_t dt + \sigma_t dW^Q_t].$$

Girsanov’s theorem informs us that the Wiener correlations are related by (7) so the question is, what is the kernel $\lambda_t = -\phi_t$ such that the drift changes as $\mu_t \mapsto r_t 1$? From the last bullet point in the previous section, it is clear that λ_t must satisfy

$$\sigma_t \lambda_t = \mu_t - r_t 1.$$ \hspace{1cm} (8)

Clearly, the very existence of a risk neutral measure Q therefore necessitates that we can find a solution λ_t to this system. E.g. if $N < d$ then there are many solutions, one of which can be written as $\lambda_t^* = \sigma_t^T (\sigma_t \sigma_t^T)^{-1}(\mu_t - r_t 1)$. On the other hand, if $N = d$ and σ is invertible then $\lambda_t^* = \sigma_t^{-1}(\mu_t - r_t 1)$ which is tantamount to the Sharpe ratio insofar as σ is the diagonal matrix $\text{diag}(\sigma_1, ..., \sigma_N)$. In any case, we refer to λ as the market price of risk vector, which makes sense insofar that each λ_t codes the factor loading for the individual risk factor W_t.

Theorem 6. The Market Price of Risk

- Under absence of arbitrage, there will exist a market price of risk vector process λ_t satisfying $r_t 1 = \mu_t - \sigma_t \lambda_t$.
- The market price of risk λ_t is related to the Girsanov kernel through $\lambda_t = -\phi_t$ and thus to the risk neutral measure Q through

$$\frac{dQ}{dP} = \exp \left\{ - \int_0^t \lambda_s^T dW^P_s - \frac{1}{2} \int_0^t || \lambda_s ||^2 ds \right\}.$$

- In a complete market, the market price of risk (or, alternatively, the martingale measure Q) is uniquely determined and there is a unique price for every derivative.
- In an incomplete market there are several possible market prices of risk processes and several possible martingale measures which are consistent with no arbitrage.
- Thus, in an incomplete market $\{\phi, \lambda, Q\}$ are not determined by absence of arbitrage alone. Instead they will be determined by supply and demand on the market i.e. by the agents.
NB: Take care to notice the condition that the components in dW^p are independent.
If this is not the case, i.e. if $dW^p \sim N(0, \Sigma dt)$ for some $d \times d$ matrix Σ, rewrite it as $dW^p = Ld\tilde{W}^p$ where $d\tilde{W}^p$ is a vector of i.i.d. Wiener increments and L is the lower triangular matrix arising from the Cholesky decomposition $\Sigma = LL^\top$. This has the effect that the market price of risk is defined through the equation

$$\sigma_t L_t \lambda_t = \mu_t - r_t 1.$$

In a complete market $N = d$ where $\sigma = \text{diag}(\sigma_1, \ldots, \sigma_N)$ this means that $\lambda_t = L^{-1} R$ where R is the vector of Sharpe ratios: $(\mu_1 - r)/\sigma_1, \ldots, (\mu_N - r)/\sigma_N)$.

5. Changing the Numeraire

As it was strongly suggested in section 2, there is no a priori reason why we should restrict ourselves to interpreting S_0 as the risk free asset in the First Fundamental Theorem as well as in the pricing equation (4). In fact, any non-dividend paying tradeable asset will do, although the martingale measures associated with each different numeraire will generally be distinct. To highlight this fact, we will write Q^0 for a martingale measure under the numeraire S_0, Q^1 for a martingale measure under the numeraire S_1 and so forth. We then have the following relationship between the different martingale measures

Theorem 7. Assume that Q^i is a martingale measure for the numeraire S_i on \mathcal{F}_T and assume S_j is a positive asset price process such that S_{jt}/S_{it} is a true Q^i martingale (not just a local one). If we define Q^j on \mathcal{F}_T by the likelihood process

$$\xi_{jt}^i = \frac{dQ^j}{dQ^i} = \frac{S_{io}}{S_{jo}} \frac{S_{jt}}{S_{it}}, \quad 0 \leq t \leq T$$ \hspace{1cm} (9)

then Q^j is a martingale measure for S_j.

Proof. The result follows by equation (9). Let X_t be an arbitrage free price process, then

$$E^{Q^j} \left[\frac{X_t}{S_{jt}} \right | \mathcal{F}_t] = E^{Q^j} \left[\frac{\xi_{jt}^i}{\xi_{it}^i} \frac{X_t}{S_{jt}} \right | \mathcal{F}_t] = E^{Q^j} \left[\frac{1}{\xi_{jt}^i} \frac{S_{jo}}{S_{io}} \frac{S_{jt}}{S_{it}} \right | \mathcal{F}_t]$$

$$= E^{Q^j} \left[\frac{S_{jt}}{S_{it}} \frac{S_{jt}}{S_{it}} \frac{X_t}{S_{jt}} \right | \mathcal{F}_t] = \frac{S_{jt}}{S_{it}} \frac{X_t}{S_{jt}}.$$

So if Q^i is a martingale measure and Q^j is defined through ξ_{jt}^i, then Q^j is a martingale measure. □

Theorem 8. Assume that the price processes obey the Q^i dynamics

$$dS_t = \text{diag}(S_t)[\mu_t dt + \sigma_t dW_t^Q].$$
Then the Q^i dynamics of the likelihood process ξ^i_t is given by
\[
d\xi^i_t = \xi^i_t(\sigma^T_{jt} - \sigma^T_{it})dW^i_{it}.
\]
In particular, the Girsanov kernel ϕ^i_t for the transition π^i to π^j is given by the volatility difference $\phi^i_t = \sigma^T_{jt} - \sigma^T_{it}$.

Proof. Apply Itô’s lemma to remembering that ξ^i_t is a Q^i martingale. □

6. **Dividend Paying Stocks**

Consider the case where S_{nt} is the price process of a dividend paying asset, then we **cannot** use the First Fundamental Theorem to infer that S_{nt}/B_t is a martingale under the risk free measure Q (or more generally, that S_{nt}/S_{jt} is a martingale under the Q^j measure). It turns out that to generalise the martingale property, we must include the "sum" of all incremental changes in the deflated cumulative dividend, meaning:

Theorem 9. Risk Neutral Valuation of Dividend Paying Assets Let D_t be the cumulative dividend paid out by the asset S_n during the interval $[0,t]$. Then, under the risk neutral martingale measure Q, the normalised gain process
\[
G_t = \frac{S_{nt}}{B_t} + \int_0^t \frac{1}{B_s} dD_s
\]
is a Q-martingale.

Proof. We consider the dynamics of a self-financing portfolio which is long one unit of S_{nt} and where all dividends immediately are invested into the risk free bank account. Such a portfolio has the value process $\Pi_t = S_{nt} + X_tB_t$ where X_t denotes the instantaneous number of units of B_t. The point is, of course, that the portfolio can be viewed as a non-dividend paying asset, meaning that Π_t/B_t will be a Q-martingale. Now, from Itô’s lemma $d\Pi_t = dS_{nt} + X_t dB_t + B_t dX_t$. Combining this with the self-financing condition $d\Pi_t = dS_{nt} + dD_t + X_t dB_t$ we find that $dX_t = B_t^{-1}dD_t$. I.e. $\Pi_t = S_{nt} + \int_0^t B_s^{-1}B_t dD_s$ which will be a Q martingale upon being deflated by B_t. □

Theorem 10. General Valuation of Dividend Paying Assets Assume now S_{nt} is an asset associated with the cumulative dividend D_t, and let S_{jt} be the price process of a non-dividend paying asset. Assuming absence of arbitrage we denote the martingale measure for the numeraire S_j by Q^j then the following holds
- The normalised gain process G defined by
\[
G_t = \frac{S_{nt}}{S_{jt}} + \int_0^t \frac{1}{S_{jt}} dD_s - \int_0^t \frac{1}{S_{jt}^2} dD_s dS_{jt}
\]
is a Q^j martingale.
- If the dividend process D has no driving Wiener component (or more generally, if $dDdS_j = 0$) then the last term vanishes.