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1. THE PROBLEM POSED

1.1. The Framework. We consider the case of an investor who is assumed to live over a known
temporal horizon [0, T ]. His total wealth, Wt, is modelled dynamically in time by a stochastic dif-
ferential equation and is assumed to have the known initial value W0 = w0. At any given instant the
investor is faced with the choice of how much of his wealth to consume, ct, and which proportion of
his wealth, πt, he should allocate to a risky asset (which we assume follows 1D geometric Brownian
motion, dSt = µStdt + σStdW

P
t , where µ and σ are known constants). The remaining wealth is

to be placed (with proportion 1− πt) in a riskless asset, which grows at the constant rate of interest
r. Furthermore, we assume that consumption is everywhere non-negative, ct ≥ 0, whilst no such
condition is placed on πt (that is to say, we allow short selling of assets). If u is the investors utility
function, and δ is some subjective discount factor, then Merton’s portfolio problem [1969] is to find
functions c∗t = c∗(t,Wt) and π∗t = π∗(t,Wt), t ∈ [0, T ], such that

(1) I(πt, ct|t = 0, w0) ≡ EP
0,w0

[∫ T

0

e−δtu(ct)dt+ e−δTu(WT )

]
is maximized. I.e. our aim is to find a consumption-investment strategy such that the expected
discounted utility of consumption over a life-time and the expected discounted utility of the bequest
WT is at its peek. To this end, let us assume we operate with utility of the constant relative risk
aversion (CRRA) variety u(x) = x1−γ

1−γ where γ codifies the investor’s risk aversion.
Finally, assume the overall portfolio dynamics is self-financing and that there are no mone-

tary injections such as labour income. From Björk’s [2009] Lemma 6.41 it follows that the wealth
dynamics is

(2) dWt = Wt

(
πt
dSt
St

+ (1− πt)
dBt
Bt

)
− ctdt

where Bt is the risk free investment, meaning that dBt = rBtdt. Substituting in the dynamics of
the assets and doing a slight rearrangement this becomes

1Here’s the idea: let St ∈ Rn be a pricing vector, and let ht ∈ Rn be the portfolio holding, such that the investor’s total
wealth at time t is Wt = hᵀ

tSt. Suppose the investor last updated his portfolio at time t − ∆t (holding ht−∆t), then the
value of his portfolio at t is Wt = hᵀ

t−∆tSt. The cost of the new portfolio he buys at t is hᵀ
tSt. We allow for proceeds

consumption of the magnitude ct∆t in the interval ∆t i.e. all in all the self-financing condition is hᵀ
t−∆tSt = hᵀ

tSt+ct∆t

or identically ∆hᵀ
tSt + ct∆t = 0. Adding and subtracting ∆hᵀ

tSt−∆t and letting ∆t → 0 we get the budget equation
Sᵀ

t dht + dSᵀ
t dht + ctdt = 0. But applying Itô to Wt = hᵀ

tSt we get dWt = hᵀ
t dSt + Sᵀ

t dht + dSᵀ
t dht, which

combined with our budget constraint gives us the self-financing condition dWt = hᵀ
t dSt − ctdt or identically dWt =

Wt
∑

i πitdSit/Sit− ctdt where we have defined the weight πit ≡ Sithit/Wt. Clearly,
∑

i πit = 1 so the nomenclature
’weight’ is appropriate.
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(3) dWt = πt[µ− r]Wtdt+ (rWt − ct)dt+ πtσWtdW
P
t .

1.2. Remark. From a purely axiomatic perspective, Merton’s problem of utility optimization is a
cacophony of dubious and overtly simplified assumptions not easily squared with real life investment-
consumption processes of rational agents. Pitfalls include the (i) highly unrealistic two asset econ-
omy, (ii) the negligence of labour income and (iii) transactions costs, (iv) the constancy of δ, µ, σ and
r, (v) the fixed lifetime of the investor and (vi) his simplified utility function. Nevertheless, we may
rejoice in the fact that the relatively complex mathematical machinery of the problem above admits
analytical solutions. Indeed, there is some solace to be sought in the more recent developments of
the problem, which has addressed (most) of these issues and more.

2. THE HAMILTON-JACOBI-BELLMAN EQUATION

2.1. The Derivation. To solve the Merton problem (1), we must venture into the field of dynamical
programming and solve the Hamilton-Jacobi-Bellman (HJB) equation. To this end, Munk [2008]
offers a pedagogically excellent albeit perhaps mathematically unsophisticated argument from dis-
crete to continuous time, whilst Øksendal [2003] provides a rigorous but also conceptually opaque
account of the subject. We shall opt for an approach which very much follows the lines of Björk,
hopefully striking a balance between the readily comprehensible and something from which the
reader can also abstract a grander perspective.

The fundamental idea is to scrutinize the dynamics (the governing PDE) of the optimal value
function (or indirect utility function) V(s, ws) : [0, T ]× R 7→ R, defined as

(4) V(s, ws) ≡ sup
{πt,ct}t∈[s,T ]

I(πt, ct|s, ws), where

I(πt, ct|s, ws) ≡ EP
s,ws

[∫ T

s

e−δtu(ct)dt+ e−δTu(WT )

]
,

which, of course, is nothing but our original problem with a generic starting point s ∈ [0, T ] and
wealth ws (think of (4) as the scenario where we have to solve the Merton problem for an investor
who has already lived for s− t0 years). To accomplish this, we must first of all assume that

(1) There are optimal functions c∗t : [s, T ] × R 7→ R+
0 and π∗t : [s, T ] × R 7→ R such that the

supremum is attained, i.e. s.t. V(s, ws) = I(π∗t , c
∗
t |s, ws). We say that there is an optimal

control law, L ∗ : {c∗t , π∗t }. This is an existence claim, but it is not a uniqueness claim.
(2) V ∈ C1,2. In words, the first order temporal derivative, and the first and second order wealth

derivatives of V all exist.
(3) A number of limiting procedures in the following arguments can be justified.

Given these assumptions, the PDE can be derived by following these standard steps in dynamic
programming:

(1) Fix the coordinate (s, ws) ∈ [0, T ] × R and consider the following two strategies over the
interval [s, T ]: Strategy I use the optimal control law L ∗ : {π∗t , c∗t }. Strategy II Use the
(sub)-optimal control law L ′ : {π′t, c′t} where

L ′ : {π′t, c′t} ≡

{
L : {πt, ct}, for (t,Wt) ∈ [s, s+ ∆s]× R
L ∗ : {π∗t , c∗t }, for (t,Wt) ∈ (s+ ∆s, T ]× R,
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where ∆s is some incremental time step. Notice that it the optimal control is used over the
latter time interval (s+ ∆s, T ].

(2) Compute the Merton expectation

I(πt, ct|s, ws) ≡ EP
s,ws

[∫ T

s

e−δtu(ct)dt+ e−δTu(WT )

]
for both strategies.

(3) Evidently, strategy I has to be at least as good as strategy II vis-a-vis the Merton expectation.
Using this, and letting ∆s→ 0 we obtain the HJB PDE.

From assumption (1) the first strategy is trivially I(π∗t , c
∗
t |s, ws) = V(s, ws). For the second strategy

we observe that we switch from a random control (L ) to an optimal control (L ∗) after ∆s amounts
of time. The wealth will therefore evolve to the stochastic state W L

s+∆s at s + ∆s and thence to its
terminal value W L ∗

T at T . Thus,

I(π′t, c
′
t|s, ws)=EP

s,ws

[∫ s+∆s

s

e−δtu(ct)dt+

∫ T

s+∆s

e−δtu(c∗t )dt+ e−δTu(W L ∗

T )

]

=EP
s,ws

[∫ s+∆s

s

e−δtu(ct)dt+ EP
s+∆s,W L

s+∆s

[∫ T

s+∆s

e−δtu(c∗t )dt+ e−δTu(W L ∗

T )

]]

=EP
s,ws

[∫ s+∆s

s

e−δtu(ct)dt+ V(s+ ∆s,W L
s+∆s)

]
where the second equality uses the Law of Iterated Expectations, and the third equality the definition
of the optimal value function. Hence, using the first insight from step (3) we have that strategies I
and II compare as

(5) V(s, ws) ≥ EP
s,ws

[∫ s+∆s

s

e−δtu(ct)dt+ V(s+ ∆s,W L
s+∆s)

]
.

Now using assumption (2) we can use Itô’s formula to write

(6)
V(s+ ∆s,W L

s+∆s) =V(s, ws) +

∫ s+∆s

s

{
∂sV(t,W L

t )dt

+ ∂wV(t,W L
t )dW L

t +
1

2!
∂wwV(t,W L

t )(dW L
t )2

}
which combined with our wealth dynamics (3) becomes

(7)
V(s+ ∆s,W L

s+∆s) =V(s, ws) +

∫ s+∆s

s

{
∂sV(t,W L

t ) + ÂLV(t,W L
t )

}
dt

+

∫ s+∆s

s

πtσW L
t ∂wV(t,W L

t )dW P
t ,

where we have defined the differential operator
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(8) ÂL ≡ πt[µ− r]W L
t ∂w + (rW L

t − ct)∂w +
1

2!
π2
t σ

2(W L
t )2∂2

ww.

Substituting (7) into inequality (5) and assuming sufficient integrability2 in order for the stochastic
integral to vanish, we obtain

(9) 0 ≥ EP
s,ws

[∫ s+∆s

s

{e−δtu(ct) + ∂sV(t,W L
t ) + ÂLV(t,W L

t )}dt

]
.

Suppose now we divide through on both sides by ∆s and take the limit as ∆s→ 0. If our expression
exhibits sufficient regularity we can justify interchanging the limit and the expectation operator.
Thus,

(10) 0 ≥ e−δsu(cs) + ∂sV(s, ws) + ÂLV(s, ws),

Notice that our functions V, πt, ct (and consequently also ÂL ) here are evaluated at the initial
coordinate (s, ws). However, whilst (s, ws) hitherto has been treated as a fixed, it was arbitrarily
chosen and thence equation (10) must hold true for all (s, ws) ∈ [0, T ] × R, with equality holding
for the optimal control L ∗ only. Hence, we arrive at the theorem:

Theorem 1. The Hamilton-Jacobi-Bellman Equation for Merton’s Problem. Consider a wealth
process (3). Let V(s, ws) be defined as in (4), and assume it satisfies assumptions (1)-(3) declared
above, then V(s, ws) satisfies the HJB equation

(11) 0 = ∂sV(s, ws) + sup
cs∈R+

0 ,πs∈R

{
e−δsu(cs) + ÂLV(s, ws)

}
,

∀(s, ws) ∈ (t0, T )× R, where

ÂL ≡ πs[µ− r]ws∂w + (rws − cs)∂w +
1

2!
π2
sσ

2w2
s∂

2
ww

and we have the obvious boundary condition V(T,wT ) = e−δTu(wT ),∀wT ∈ R (if we start the
Merton problem when the investor dies there’s nothing but the bequest). For each (s, ws) ∈ [0, T ]×
R the supremum is attained by c∗s, π

∗
s .

Remark. Importantly, the HJB equation (11), whilst highly non-linear, ”only” involves the supre-
mum over all admissible consumptions and holdings of risky assets at time s, and not the supremum
over the entire process as we saw it in (4).

Do notice that the theorem above only has the form of a necessary condition: i.e. if V is an optimal
value function and L ∗ an optimal control, then V satisfies the HJB equation with L ∗ giving rise
to the supremum. For computational purposes even more interesting is the fact the HJB equation
per se serves as a sufficient condition for the optimal control problem. This idea is captured in the
so-called verification theorem which decrees:

2In practice this translates to the condition that π2
t (W L

t )2∂2
wwV ∈ £2. For recall that square integrable functions

g ∈ £2[a, b] have the property that Ea

[∫ b
a g(u)dWu

]
= 0 cf. Björk’s Proposition 4.7.
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Theorem 2. The Verification Theorem for Merton’s Problem. Suppose we have the functions
H(s, ws), π∗(s, ws) and c∗(s, ws) such that

• H is sufficiently integrable (see footnote 2) and solves the HJB equation

0 = ∂sH(s, ws) + sup
cs∈R+

0 ,πs∈R

{
e−δsu(cs) + ÂLH(s, ws)

}
,

∀(s, ws) ∈ (0, T )× R, with the terminal conditionH(T,wT ) = e−δTu(wT ),∀wT ∈ R.
• π∗(s, ws) : [0, T ] × R 7→ R and c∗(s, ws) : [0, T ] × R 7→ R+

0 - that is, π∗ and c∗ are
admissible control laws (they satisfy the pre-specified function constraints).

• For each fixed (s, ws) the supremum in the expression

sup
cs∈R+

0 ,πs∈R

{
e−δsu(cs) + ÂLH(s, ws)

}
is attained by the choice πs = π∗(s, ws), cs = c∗(s, ws).

Then it holds that
(1) The optimal value function (4) to Merton’s control problem is given by V(s, ws) = H(s, ws).
(2) There exist an optimal control law, viz. {π∗(s, ws), c∗(s, ws)}.

Proof. Let functions H, π∗ and c∗ be given as above. Select the arbitrary admissible control law
L : {πt, ct} and fix a coordinate (s, ws). If we define the dynamics of the wealth process W L

t as in
(3) with boundary W L

s = ws, then an straight-forward application of Itô implies that

(12)
H(T,W L

T ) = H(s, ws) +

∫ T

s

{
∂sH(t,W L

t ) + ÂLH(t,W L
t )

}
dt

+

∫ T

s

πtσWt∂wH(t,W L
t )dW P

t .

Using our assumptions that H satisfies the HJB equation and has the terminal value H(T,W L
T ) =

e−δTu(W L
T ) we get

(13) H(s, ws) ≥
∫ T

s

e−δtu(ct)dt+ e−δTu(W L
T )−

∫ T

s

πtσWt∂wH(t,W L
t )dW P

t .

Applying the (t, ws) conditional expectation to this equation, and using the integrability assumption:

(14) H(s, ws) ≥ EP
t,ws

[∫ T

s

e−δtu(ct)dt+ e−δTu(W L
T )

]
≡ I(πt, ct|s, ws).

This inequality is true for arbitrary control laws - also in the event that we selected the supremal
control law. Hence, from the definition of V , (4):

(15) H(s, ws) ≥ V(s, ws).

Had we opted for using the functions π∗, c∗ it is clear that we would have obtained a strict equality
in equation (14) viz. H(s, ws) = I(π∗t , c

∗
t |s, ws). If we substitute this into the trivial inequality

V(s, ws) ≥ I(π∗t , c
∗
t |s, ws) we get:
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(16) V(s, ws) ≥ H(s, ws).

Evidently, (15) and (16) jointly implyH = V and that {π∗t , c∗t } is an optimal control. �

3. SOLVING MERTON’S PROBLEM

3.1. Is the HJB equation solvable? Qua the inherent non-linearity of the HJB equation, the reader
might reasonably ask whether we have made any significant progress regarding solvability of the
optimal value function? The answer is one of ambivalence: it will hardly come as a surprise that
the Merton problem in particular admits nice analytic solutions. Nonetheless, there are analogous
optimization problems with analogous HJB equations that fare less well in this respect.

The protocol we follow when searching for a solution to the HJB equation is roughly as follows.
First of all we fix an arbitrary coordinate in time and wealth space and find the control functions
(π, c) for which the expression under the supremum sign attains its maximum. This is a matter
of straightforward differentiation. However, these controls will naturally depends on the (as of yet
unknown) function V and its various derivatives. Next, based on the terminal condition, we make an
ansatz as to the general form of V , which in turn typically involves some unknown function f . Plug
this ansatz into the partial derivatives and our control functions, and then substitute these equations
into the HJB PDE (now with strict equality as we are using a posited optimal control law). If we are
fortunate the resulting differential equation in f will be solvable.

3.2. The Solution. Written explicitly, the equation we need to solve is of the form

0 = ∂sV + sup
cs≥0,πs

{
e−δs

c1−γs

1− γ
+ πs[µ− r]ws∂wV + (rws − cs)∂wV +

1

2!
π2
sσ

2w2
s∂

2
wwV

}
,

s.t. V(T,wT ) = e−δT
w1−γ
T

1− γ
.

The initial static optimization problem to be solved is trivial. We must simply differentiate the { }-
expression with respect to cs and πs and equate to zero in order to get the first order conditions:

∂c{ } = 0 : e−δscγs − ∂wV = 0⇔ cs =
(
eδs∂wV

)− 1
γ(17a)

∂w{ } = 0 : [µ− r]ws∂wV + πsσ
2w2

s∂
2
wwV = 0⇔ πs =

−[µ− r]∂wV
σ2ws∂2

wwV
(17b)

Clearly, our controls depends on V . We therefore make the ansatz that the solution is of the form

(18) V(s, ws) = e−δs
w1−γ
s

1− γ
f(s),

where f : R 7→ R is a function which obeys f(T ) = 1 cf. the terminal condition. Differentiating
this expression wrt s, w and ww we obtain
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∂sV = e−δs
w1−γ
s

1− γ
ḟ(s)− δe−δsw

1−γ
s

1− γ
f(s)(19a)

∂wV = e−δsw−γs f(s)(19b)

∂2
wwV = −γe−δsw−γ−1

s f(s)(19c)

where the dot above the f symbolizes the strict temporal derivative. Substituting (19) back into (17)
we obtain the elegant results

π∗s =
µ− r
σ2γ

,(20a)

c∗s = wsf(s)−
1
γ ,(20b)

but, of course, we have yet to find out which dynamics governs f . As suggested above, there’s only
one way to find out: plug (19) and (20) into the HJB equation (3.2). Inevitably, this becomes rather
messy in the beginning, but it simplifies considerably by eliminating common factors and relabeling
constants:

0 =e−δs
w1−γ
s

1− γ
ḟ(s)− δe−δsw

1−γ
s

1− γ
f(s) +

{
e−δs

w1−γ
s

1− γ
f(s)

γ−1
γ

+
[µ− r]2

σ2γ
wse

−δsw−γf(s) +
(
rws − wsf(s)−

1
γ

)
e−δsw−γs f(s)

− 1

2!

[µ− r]2

σ4γ2
σ2w2

sγe
−δsw−γ−1

s f(s)

}
⇔ 0 =w1−γ

s

[
1

1− γ
ḟ(s)− δ

1− γ
f(s) +

1

1− γ
f(s)

γ−1
γ +

[µ− r]2

σ2γ
f(s)

+ rf(s)− f(s)
γ−1
γ − 1

2

[µ− r]2

σ2γ
f(s)

]
⇔ 0 =w1−γ

s

[
ḟ(s) +

(
1

2

[µ− r]2(1− γ)

σ2γ
+ r(1− γ)− δ

)
f(s) + γf(s)

γ−1
γ

]
.

Defining the constant

(21) Γ ≡ 1

2

[µ− r]2(1− γ)

σ2γ2
+ r

1− γ
γ
− δ

γ

and using the fact that our equation must hold for all ws and all s we reduce our expression to

(22) 0 = ḟ(s) + γΓf(s) + γf(s)
γ−1
γ , s.t. f(T ) = 1.

This is a Bernoulli equation and it can easily be solved. The trick is to define a function

(23) g(s) ≡ f(s)
1
γ

such that f(s) = g(s)γ and ḟ(s) = γġ(s)g(s)γ−1. Plugging this into (22) it is easily to verify that
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(24) 0 = ġ(s) + Γg(s) + 1, s.t. g(T ) = 1.

Using the integration multiplier eΓt we can write this as equation as

0 =
d

ds
[eΓsg(s)] + eΓs

which integrates to

0 = eΓsg(s) + Γ−1eΓs + C

where C is a constant. Since g(T ) = 1 we find that

C = −(1 + Γ−1)eΓT

and thence

(25) g(s) = (1 + Γ−1)eΓ(T−s) − Γ−1.

Collecting all of these results, we finally arrive at:

π∗s =
µ− r
σ2γ

,(26a)

c∗s =
wsΓ

(1 + Γ)eΓ(T−s) − 1
,(26b)

V(s, ws) = e−δs
w1−γ
s

1− γ

(
(1 + Γ−1)eΓ(T−s) − Γ−1

)γ
.(26c)

3.3. Economic Analysis. The optimal proportion allocated to the risky asset, (26a), exhibits in-
dependence of time and wealth, being proportional to excess return and inversely proportional to
variance of returns and risk aversion. From a modern portfolio theoretic perspective this is in ac-
cordance with our expectations. Too see this consider the simple two asset economy where our
expected utility of portfolio returns is of the mean-variance form E[U(rp)] = E[rp] − γ

2Var[rp].
Since our entire wealth is divided between a risky and a risk free asset, the return on our portfolio is
rp = πrr+(1−π)rf where E[rr] = µ and Var[rr] = σ2. Thus, E[U(rp)] = πµ+(1−π)rf− γ2π

2σ2,
which readily is seen to be maximized when π∗ =

µ−rf
σ2γ .

For optimal consumption (26b) consider the empirically plausible case of γ ≈ 13. Then Γ ≈ −δ
(the subjective discount factor of the agent) and

c∗s ≈
wsδ

1 + (δ − 1)e−δ(T−s)
.

This means that optimal consumption is linear in the wealth variable, but decreases exponentially in
time, which is certainly plausible.

3Rolf Poulsen would say that γ is closer to 2-5.
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